Recursive functions

E-OLYMP [1207. Sqrt log sin](https://www.e-olymp.com/en/problems/1207) An evil professor has just assigned you the following problem. A sequence is defined by the following recurrence:

$$
x_0 = 1,
$$

$$
x_i = x_{\lfloor i - \sqrt{i} \rfloor} + x_{\lfloor \ln(i) \rfloor} + x_{\lfloor i \sin^2(i) \rfloor}
$$

Find $x_{1000000}$.

 \blacktriangleright The value of x_i will be calculated by means of the function $f(i)$. To do it we must implement the recurrence

$$
f(i) = f(\bigg\lfloor i - \sqrt{i} \bigg\rfloor) + f(\bigg\lfloor \ln(i) \bigg\rfloor) + f(\bigg\lfloor i \sin^2(i) \bigg\rfloor),
$$

$$
f(0) = 1
$$

with memoization of $f(i)$ in a linear array dp of size $10⁶$.

E-OLYMP [1211. Infinite sequence](https://www.e-olymp.com/en/problems/1211) Consider an infinite sequence A defined as follows:

$$
A_0 = 1,
$$

$$
A_i = A_{[i/p]} + A_{[i/q]}, i \ge 1
$$

You will be given *n*, *p* and *q*. Find the value of A_n ($0 \le n \le 10^{12}$).

 \blacktriangleright To calculate all the values of sequence A_{*i*} ($i = 0, 1, ..., n$) using an array is impossible because of the restriction $n \leq 10^{12}$. To memoize the results we shall use a *map* structure: the value A_i will be stored in m[*i*]. Calculate the values of A_n memoizing the intermediate results.

To store the values of A*ⁱ* declare the variable m.

map<long long,long long> m;

The function *calc* returns the value of m[*n*].

```
long long calc(long long n, int p, int q)
{
 if (n == 0) return 1;
 if (m[n] > 0) return m[n];
 return m[n] = calc(n/p,p,q) + calc(n/q,p,q);}
```
E-OLYMP [1212. Infinite sequence -](https://www.e-olymp.com/en/problems/1212) 2 Consider an infinite sequence A defined as follows:

$$
A_i = 1, i \le 0,
$$

\n
$$
A_i = A_{[i/p]-x} + A_{[i/q]-y}, i \ge 1
$$

You will be given *n*, *p*, *q*, *x* and *y*. Find the *n*-th ($0 \le n \le 10^{13}$) element of A.

 \blacktriangleright Since $n \leq 10^{13}$, we can't store the values of the sequence A_i ($i = 0, 1, ..., n$) neither by means of array, nor by means of *map* structure. Therefore, we implement the recursion as indicated in the recurrence relation, but at the same time the values of A*i*, for which $i < 5000000$, will be stored in the array m.

To store the values of A_i ($i < 5000000$) declare the array m.

```
#define MAX 5000000
long long m[MAX];
```
The function *calc* computes the value of A*n*.

```
long long calc(long long n, long long p, long long q, 
                 long long x, long long y)
{
   long long temp;
```

```
If n \leq 0, then A_n = 1.
```
if ($n \leq 0$) return 1;

If $n < 5000000$ and the value m[n] is already computed (is not zero), return it.

if $((n \leq MAX) \& m[n] > 0)$ return $m[n]$;

Perform a recursive calculation of the value A_n according to the formula given in the problem statement.

```
temp = calc(n/p-x,p,q,x,y) + calc(n/q-y,p,q,x,y);
```
If $n < 5000000$, memoize A_n in m array to avoid recalculations.

```
if (n < MAX) m[n] = temp; return temp;
}
```
E-OLYMP [3936. Towers](https://www.e-olymp.com/en/problems/3936) of Hanoi Simulate the Hanoi Towers.

► Suppose we need to move *n* disks fron the peg А to the peg B using the peg C.

We shall use the following recursive scheme:

• move a disk from A to B;

The function *hanoi* simulates the movement of disks from the peg *from* to the peg *to*, using an additionl peg *additional*.


```
void hanoi(int n, int from, int to, int additional)
{
  if (n == 0) return;
 hanoi(n-1,from, additional, to);
  printf("%d %d\n", from, to);
  hanoi(n-1,additional,to,from);
}
```
E-OLYMP [6155. Wrong monks](https://www.e-olymp.com/en/problems/6155) Find the minimum number of moves to solve the Hanoi Towers game with *n* discs.

► To move *n* disks from the first to the third peg, you should:

- move $n-1$ discs from the first to the second peg
- move the remaining one (largest) disc from the first to the third peg
- move $n-1$ discs from the second to the third peg

Let $f(n)$ be the required number of moves. Then we get the recurrence relation: $f(n) = 2 * f(n-1) + 1$

Let's calculate some values of this function:

$$
f(1) = 1,\nf(2) = 2 * f(1) + 1 = 3,\nf(3) = 2 * f(2) + 1 = 7,\nf(4) = 2 * f(3) + 1 = 15
$$

Let us prove by the method of mathematical induction that $f(n) = 2^n - 1$. *Base step.* $f(1) = 2^1 - 1 = 1$. *Inductive step.* $f(n + 1) = 2 * f(n) + 1 = 2 * (2ⁿ - 1) + 1 = 2ⁿ⁺¹ - 1$.

Since $n \leq 64$, the answer to problem $2^n - 1$ does not fit into a 64-bit signed type. Let's use an unsigned 64-bit integer type **unsigned long long**.

E-OLYMP [8304. Fun function](https://www.e-olymp.com/en/problems/8304) Find the value of the function
 $f(x, y) =\begin{cases} 0, x \le 0 \text{ or } y \le 0 \\ f(x - 1, y - 2) + f(x - 2, y - 1) + 2, x \le y \\ f(x - 2, y - 2) + 1, x > y \end{cases}$

It is known that $0 \le x, y \le 50$.

► Implement the recursive function with memoization. Declare two-dimensional array for storing the function values: $dp[x][y] = f(x, y)$.

long long $dp[51][51]$;

E-OLYMP [1520. Odd divisors](https://www.e-olymp.com/en/problems/1520) Let f(*n*) be the greatest odd divisor of *n*, where *n* is a positive integer. You are given a positive integer *n*. Find the sum $f(1) + f(2) + ... +$ *f*(*n*).

If *n* is odd, then $f(n) = n$. If *n* is even, then $f(n) = f(n/2)$.

Let $g(n) = f(1) + f(2) + ... + f(n)$. Divide the set of positive integers from 1 to *n* into two subsets: odd ODD = $\{1, 3, 5, ..., 2k - 1\}$ and even EVEN = $\{2, 4, 6, ..., 2l\}$ numbers.

Among the positive integers from 1 to *n* there are exactly

$$
k = \left\lfloor \frac{n+1}{2} \right\rfloor \text{ odd and } l = \left\lfloor \frac{n}{2} \right\rfloor \text{ even numbers}
$$

Then $f(1) + f(3) + f(5) + \dots + f(2k - 1) = 1 + 3 + 5 + \dots + (2k - 1) = \frac{1 + 2k - 1}{2} \cdot k = k^2$

At the same time $f(2) + f(4) + f(6) + ... + f(2l) = f(1) + f(2) + f(3) + ... + f(l) =$ $g(l) = g\left|\left|\frac{n}{2}\right|\right|$ J \setminus $\overline{}$ \setminus ſ $\overline{}$ $\overline{}$ L I 2 $g \bigg| \bigg| \frac{n}{2}$

So $g(n) = k^2 + 1$ J \backslash $\overline{}$ l ſ l $\lfloor \overline{2} \rfloor$ \mathbf{r} 2 $g\left(\left\lfloor \frac{n}{2} \right\rfloor\right]$, where $k = \lfloor (n+1)/2 \rfloor$.

To stop the recursion we assume that $g(0) = 0$.

Consider the first test case, where $n = 7$.

Among the positive integers from 1 to 7 there are exactly $k = \lfloor (7+1)/2 \rfloor = 4$ odd and $l = |7/2| = 3$ even numbers.

$$
ODD = \begin{bmatrix} 1 & 3 & 5 & 7 \end{bmatrix}
$$

\nEVEN = $\begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$
\n
$$
g(7) = \begin{bmatrix} \frac{7+1}{2} \end{bmatrix}^2 + g \left(\begin{bmatrix} \frac{7}{2} \end{bmatrix} \right) = 16 + g(3) =
$$

\n
$$
16 + \begin{bmatrix} \frac{3+1}{2} \end{bmatrix}^2 + g \left(\begin{bmatrix} \frac{3}{2} \end{bmatrix} \right) = 16 + 4 + g(1) = 16 + 4 + 1 = 21
$$

\n
$$
\frac{g(7)}{9(7)} = \frac{f(1)}{1} + \frac{f(2)}{1} + \frac{f(3)}{3} + \frac{f(4)}{1} + \frac{f(5)}{5} + \frac{f(6)}{1} + \frac{f(7)}{7}
$$

\n
$$
= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \frac{f(2)}{9(3)}
$$

\n
$$
\frac{g(3)}{9(3)} = \frac{f(1)}{1} + \frac{f(2)}{1} + \frac{f(3)}{1} + \frac{f(3)}{1} + \frac{f(4)}{1} + \frac{f(3)}{3}
$$

\n
$$
= \begin{bmatrix} 4 & 1 & 1 \end{bmatrix} + \frac{f(4)}{1} + \frac{f(3)}{3}
$$

E-OLYMP [1517. Simple addition](https://www.e-olymp.com/en/problems/1517) Let's define the next recursive function f(*n*), where

$$
f(n) = \begin{cases} n\% 10, \text{if } n\% 10 > 0 \\ 0, \text{if } n = 0 \\ f(n/10) \text{ otherwise} \end{cases}
$$

Let's define the function $S(p, q)$ as follows:

$$
S(p, q) = \sum_{i=p}^{q} f(i)
$$

In this problem you have to calculate $S(p, q)$ on given values of p and q.

 \blacktriangleright The function $f(n)$ given in the problem statement finds the last non-zero digit of *n*. For example, $f(1234) = 4$, $f(3900) = f(390) = f(39) = 9$.

Let

$$
g(p) = \sum_{i=1}^p f(i)
$$

Then $S(p, q) = g(q) - q(p - 1)$.

To compute the value of $g(p)$, the sum of last significant digits for numbers from 1 to *p*, divide the numbers from 1 to *p* to three sets (\prime) is an integer division):

- 1. Numbers from $(p / 10) * 10 + 1$ to *p*;
- 2. Numbers from $\hat{1}$ to $(p \mid 10) * 10$ that are not null-terminated;

3. Numbers from 1 to $(p / 10) * 10$ that are null-terminated;

The sum of the last significant digits in the first set equals to $1 + 2 + ... + p$ mod 10 $t = t * (t + 1) / 2$, where $t = p \mod 10$. The sum of numbers in the second set equals to p / 10 * 45, because the sum of all digits from 1 to 9 equals to 45, and the number of full tens equals to *p* / 10. The required sum for the third set we shall find recursively: it equals to $g(p / 10)$. We get a recurrence:

$$
g(p) = \frac{t \cdot (t+1)}{2} + 45 \cdot \left\lfloor \frac{p}{10} \right\rfloor + g \left(\left\lfloor \frac{p}{10} \right\rfloor \right), t = p \mod 10
$$

$$
g(0) = 0
$$

If $p = 32$, the fist set contains the numbers 31, 32, the second contains 1, ..., 9, 11, …, 19, 21, …, 29, and the third contains 10, 20, 30. The value *t* = 32 mod 10 equals to 2.

 $g(1234) =$ 2 $\frac{4.5}{2}$ + 45 * 123 + g(123) = 10 + 5535 + g(123) = 5545 + g(123) Computing the value $g(123) = 595$, we get: $g(1234) = 5545 + g(123) = 5545 + 595 = 6140$

E-OLYMP [1343. Bad substring](https://www.e-olymp.com/en/problems/1343) Find the number of strings of length $n (0 \le n \le n)$ 45) consisting of only the characters '*a*', '*b*' and '*c*', not containing the substring "*ab*".

 \blacktriangleright Let f(*n*) be the number of required strings of length *n*. If $n = 1$ we have 3 such strings, when $n = 2$ we have 8 strings:

Consider all possible ways to build the required strings. In the first position we can put one of three letters: '*a*', '*b*' or '*c*'. If we first put '*b*' or '*c*', then in the next $n-1$ positions we can put any of $f(n - 1)$ words. If we first put '*a*', then we need to consider the cases of placing the letters in the second position. If we place in the second position (c) , then in the next $n-2$ positions we can put any of $f(n-2)$ words. If we put in the second position '*a*', then similary we need to consider the placement of letters in the third position.

We have a relation: $f(n) = 2f(n-1) + f(n-2) + f(n-3) + ... + f(1) + f(0) + 1$

How to simplify this recurrence? Let's rewrite it from $f(n-1)$:

 $f(n-1) = 2f(n-2) + f(n-3) + f(n-4) + ... + f(1) + f(0) + 1$ whence

 $f(n-2) + f(n-3) + f(n-4) + ... + f(1) + f(0) + 1 = f(n-1) - f(n-2)$ Substitute this sum in the first relation:

f(*n*) = 2f(*n* – 1) + f(*n* – 1) – f(*n* – 2) = 3f(*n* – 1) – f(*n* – 2) So we get the recurrence relation:

$$
\begin{cases} f(n) = 3f(n-1) - f(n-2) \\ f(0) = 1, f(1) = 3 \end{cases}
$$

E-OLYMP [5973. Out of the line!](https://www.e-olymp.com/en/problems/5973) *n* soldiers stay in one line. In how many ways can we choose some of them (at least one) so that among them there will not be soldiers standing in a line beside?

 \blacktriangleright Let f(*n*) be the number of ways for soldiers to out of the line. Its obvious that $f(1) = 1$ and $f(2) = 2$.

Let the soldiers in the row are numbered in decreasing order from *n* to 1. Then its possible to get out of the line with one of the next ways:

- *n*-th goes out, all others stay in a line;
- *n*-th goes out, then $(n 1)$ -st must stay in a line. Then recursively consider the solution for $(n-2)$ soldiers;

• *n*-th stay in a line. Then recursively solve the problem for $(n - 1)$ soldiers; So we get the recurrence relation:

$$
\begin{cases} f(n) = f(n-1) + f(n-2) + 1 \\ f(1) = 1, f(2) = 2 \end{cases}
$$

E-OLYMP 6583. [Counting ones](https://www.e-olymp.com/en/problems/6583) How many ones in binary representation of numbers from 0 to *n*?

► Let f(*n*) be the number of ones in binary representation of all integers from 0 to *n*. Then the answer for the interval [a; b] is the value $f(b) - f(a - 1)$.

If *n* is odd, then $f(n) = 2 * f(n / 2) + \lceil n/2 \rceil$.

If *n* is even, let $f(n) = f(n-1) + s(n)$, where $s(n)$ is the number of ones in binary representation of *n*.

The base case is $f(0) = 0$.

Consider the sample case, where $a = 2$, $b = 12$. The answer for the interval [2; 12] will be the value of $f(12) - f(1)$. There is one digit 1 in binary representation of the number 1, so $f(1) = 1$. Compute $f(12)$:

The answer is $f(12) - f(1) = 22 - 1 = 21$.