
Recursive functions

E-OLYMP 1207. Sqrt log sin An evil professor has just assigned you the

following problem. A sequence is defined by the following recurrence:

x0 = 1,

xi =
 ii

x


 +   ix ln +
  ii

x 2sin

Find x1000000.

► The value of xi will be calculated by means of the function f(i). To do it we

must implement the recurrence

)(if =  )(iif  +   )ln(if +   )sin(2 iif ,

1)0(f

with memoization of f(i) in a linear array dp of size 106.

E-OLYMP 1211. Infinite sequence Consider an infinite sequence A defined as

follows:

A0 = 1,

Ai = A[i/p] + A[i/q] , i  1

You will be given n, p and q. Find the value of An (0  n  1012).

► To calculate all the values of sequence Ai (i = 0, 1, …, n) using an array is

impossible because of the restriction n  1012. To memoize the results we shall use a

map structure: the value Ai will be stored in m[i]. Calculate the values of An memoizing

the intermediate results.

To store the values of Ai declare the variable m.

map<long long,long long> m;

The function calc returns the value of m[n].

long long calc(long long n, int p, int q)

{

 if (n == 0) return 1;

 if (m[n] > 0) return m[n];

 return m[n] = calc(n/p,p,q) + calc(n/q,p,q);

}

E-OLYMP 1212. Infinite sequence - 2 Consider an infinite sequence A defined

as follows:

Ai = 1, i  0,

Ai = A[i/p] – x + A[i/q] – y , i  1

You will be given n, p, q, x and y. Find the n-th (0  n  1013) element of A.

► Since n  1013, we can’t store the values of the sequence Ai (i = 0, 1, …, n)

neither by means of array, nor by means of map structure. Therefore, we implement the

recursion as indicated in the recurrence relation, but at the same time the values of Ai,

for which i < 5000000, will be stored in the array m.

https://www.e-olymp.com/en/problems/1207
https://www.e-olymp.com/en/problems/1211
https://www.e-olymp.com/en/problems/1212

To store the values of Ai (i < 5000000) declare the array m.

#define MAX 5000000

long long m[MAX];

The function calc computes the value of An.

long long calc(long long n, long long p, long long q,

 long long x, long long y)

{

 long long temp;

If n  0, then An = 1.

 if (n <= 0) return 1;

If n < 5000000 and the value m[n] is already computed (is not zero), return it.

 if ((n < MAX) && m[n] > 0) return m[n];

Perform a recursive calculation of the value An according to the formula given in

the problem statement.

 temp = calc(n/p-x,p,q,x,y) + calc(n/q-y,p,q,x,y);

If n < 5000000, memoize An in m array to avoid recalculations.

 if (n < MAX) m[n] = temp;

 return temp;

}

E-OLYMP 3936. Towers of Hanoi Simulate the Hanoi Towers.

► Suppose we need to move n disks fron the peg А to the peg B using the peg C.

A B C

We shall use the following recursive scheme:

 move n – 1 disks from А to C using B;

A B C

 move a disk from А to B;

https://www.e-olymp.com/en/problems/3936

A B C

 move n – 1 disks from C to B using А;

A B C

The function hanoi simulates the movement of disks from the peg from to the peg

to, using an additionl peg additional.

from to additional

from to additional

from to additional

from to additional

=

1)

2)

3)

void hanoi(int n, int from, int to, int additional)

{

 if (n == 0) return;

 hanoi(n-1,from,additional,to);

 printf("%d %d\n",from,to);

 hanoi(n-1,additional,to,from);

}

E-OLYMP 6155. Wrong monks Find the minimum number of moves to solve the

Hanoi Towers game with n discs.

► To move n disks from the first to the third peg, you should:

• move n – 1 discs from the first to the second peg

• move the remaining one (largest) disc from the first to the third peg

• move n – 1 discs from the second to the third peg

Let f(n) be the required number of moves. Then we get the recurrence relation:

f(n) = 2 * f(n – 1) + 1

Let's calculate some values of this function:

f(1) = 1,

f(2) = 2 * f(1) + 1 = 3,

f(3) = 2 * f(2) + 1 = 7,

f(4) = 2 * f(3) + 1 = 15

https://www.e-olymp.com/en/problems/6155

Let us prove by the method of mathematical induction that f(n) = 2n – 1.

Base step. f(1) = 21 – 1 = 1.

Inductive step. f(n + 1) = 2 * f(n) + 1 = 2 * (2n – 1) + 1 = 2n+1 – 1.

Since n ≤ 64, the answer to problem 2n – 1 does not fit into a 64-bit signed type.

Let's use an unsigned 64-bit integer type unsigned long long.

E-OLYMP 8304. Fun function Find the value of the function

It is known that 0 ≤ x, y ≤ 50.

► Implement the recursive function with memoization. Declare two-dimensional

array for storing the function values: dp[x][y] = f(x, y).

long long dp[51][51];

E-OLYMP 1520. Odd divisors Let f(n) be the greatest odd divisor of n, where n

is a positive integer. You are given a positive integer n. Find the sum f(1) + f(2) + ... +

f(n).

► If n is odd, then f(n) = n. If n is even, then f(n) = f(n / 2).

Let g(n) = f(1) + f(2) + ... + f(n). Divide the set of positive integers from 1 to n into

two subsets: odd ODD = {1, 3, 5, …, 2k – 1} and even EVEN = {2, 4, 6, …, 2l}

numbers.

1

2

3

4

5

6

...

...

2k-1

2l

ODD =

EVEN =

Among the positive integers from 1 to n there are exactly

k = 






 

2

1n
 odd and l = 









2

n
 even numbers

Then f(1) + f(3) + f(5) + ... + f(2k – 1) = 1 + 3 + 5 + … + (2k – 1) =

k
k




2

121
 = k2

At the same time f(2) + f(4) + f(6) + ... + f(2l) = f(1) + f(2) + f(3) + ... + f(l) =

g(l) = 
















2

n
g

So g(n) = k2 + 
















2

n
g , where k =  2/)1(n .

To stop the recursion we assume that g(0) = 0.

Consider the first test case, where n = 7.

Among the positive integers from 1 to 7 there are exactly k =  2/)17( = 4 odd

and l =  2/7 = 3 even numbers.

https://www.e-olymp.com/en/problems/8304
https://www.e-olymp.com/en/problems/1520

1

2

3

4

5

6

7ODD =

EVEN =

g(7) =

2

2

17







 
 + 

















2

7
g = 16 + g(3) =

16 +

2

2

13







 
 + 

















2

3
g = 16 + 4 + g(1) = 16 + 4 + 1 = 21

g(7) = f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)

1 + f(1) + 3 + f(2) + 5 + f(3) + 7=

16 + g(3)=

g(3) = f(1) + f(2) + f(3)

1 + f(1) + 3=

4 + g(1)=

E-OLYMP 1517. Simple addition Let's define the next recursive function f(n),

where

f(n) =












otherwise)10/(

0 if ,0

010% if ,10%

nf

n

nn

Let's define the function S(p, q) as follows:

S(p, q) = 


q

pi

if)(

In this problem you have to calculate S(p, q) on given values of p and q.

► The function f(n) given in the problem statement finds the last non-zero digit of

n. For example, f(1234) = 4, f(3900) = f(390) = f(39) = 9.

Let

g(p) = 


p

i

if
1

)(

Then S(p, q) = g(q) – q(p – 1).

To compute the value of g(p), the sum of last significant digits for numbers from 1

to p, divide the numbers from 1 to p to three sets (‘/’ is an integer division):

1. Numbers from (p / 10) * 10 + 1 to p;

2. Numbers from 1 to (p / 10) * 10 that are not null-terminated;

https://www.e-olymp.com/en/problems/1517

3. Numbers from 1 to (p / 10) * 10 that are null-terminated;

The sum of the last significant digits in the first set equals to 1 + 2 + … + p mod 10

= t * (t + 1) / 2, where t = p mod 10. The sum of numbers in the second set equals to p /

10 * 45, because the sum of all digits from 1 to 9 equals to 45, and the number of full

tens equals to p / 10. The required sum for the third set we shall find recursively: it

equals to g(p / 10).We get a recurrence:

g(p) =
 
2

1 tt
 + 










10
45

p
 + 

















10

p
g , t = p mod 10

g(0) = 0

If p = 32, the fist set contains the numbers 31, 32, the second contains 1, …, 9, 11,

…, 19, 21, …, 29, and the third contains 10, 20, 30. The value t = 32 mod 10 equals to

2.

31 32

S1 = 1 + 2 = 3

1 2

S2 = 45 * 3 = 135

3 ... 9

11 12 13 ... 19

21 22 23 ... 29

10 20

S3 = f(1) + f(2) + f(3) = g(3)

30

1 2 3

IIIIII

g(32) =
2

32 
 + 45 * 5 + g(3) = 3 + 135 + (1 + 2 + 3) = 144

Let p = 1234.

IIIIII

1231 1232

S1 = 1 + 2 + 3 + 4 = 10

1 2

S2 = 45 * 123 = 5535

3 ... 9

11 12 13 ... 19

1221 1222 1223 ... 1229

10 20

S3 = f(1) + f(2) + … + f(123) = g(123)

301233 1234

. . .

... 1230

1 2 3 ... 123

g(1234) =
2

54 
 + 45 * 123 + g(123) = 10 + 5535 + g(123) = 5545 + g(123)

Computing the value g(123) = 595, we get:

g(1234) = 5545 + g(123) = 5545 + 595 = 6140

E-OLYMP 1343. Bad substring Find the number of strings of length n (0 ≤ n ≤

45) consisting of only the characters 'a', 'b' and 'c', not containing the substring "ab".

https://www.e-olymp.com/en/problems/1343

► Let f(n) be the number of required strings of length n. If n = 1 we have 3 such

strings, when n = 2 we have 8 strings:

a b c

n = 1

aa ba ca

n = 2

ac bb

bc

cb

cc

Consider all possible ways to build the required strings. In the first position we can

put one of three letters: ‘a’, ‘b’ or ‘c’. If we first put ‘b’ or ‘c’, then in the next n – 1

positions we can put any of f(n – 1) words. If we first put ‘a’, then we need to consider

the cases of placing the letters in the second position. If we place in the second position

‘c’, then in the next n – 2 positions we can put any of f(n – 2) words. If we put in the

second position ‘a’, then similary we need to consider the placement of letters in the

third position.

n

f(n) =

n

+

f(n-1)b

f(n-1)c

n

+f(n-2)a c

n

+f(n-3)a ca

n

+ . . .f(n-4)a caa

n

+f(1)a a... ca

n

+...a aa ca

n

...a aa aa

We have a relation:

f(n) = 2f(n – 1) + f(n – 2) + f(n – 3) + … + f(1) + f(0) + 1

How to simplify this recurrence? Let’s rewrite it from f(n – 1):

f(n – 1) = 2f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1,

whence

f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1 = f(n – 1) – f(n – 2)

Substitute this sum in the first relation:

f(n) = 2f(n – 1) + f(n – 1) – f(n – 2) = 3f(n – 1) – f(n – 2)

So we get the recurrence relation:









3)1(,1)0(

)2()1(3)(

ff

nfnfnf

E-OLYMP 5973. Out of the line! n soldiers stay in one line. In how many ways

can we choose some of them (at least one) so that among them there will not be soldiers

standing in a line beside?

► Let f(n) be the number of ways for soldiers to out of the line. Its obvious that

f(1) = 1 and f(2) = 2.

+

n

n-1 n-2 ... 1=n n-1 n-2 ... 1

+

n

f(n-2) f(n-1)nn-1

Let the soldiers in the row are numbered in decreasing order from n to 1. Then its

possible to get out of the line with one of the next ways:

 n-th goes out, all others stay in a line;

 n-th goes out, then (n – 1)-st must stay in a line. Then recursively consider

the solution for (n – 2) soldiers;

 n-th stay in a line. Then recursively solve the problem for (n – 1) soldiers;

So we get the recurrence relation:









2)2(,1)1(

1)2()1()(

ff

nfnfnf

E-OLYMP 6583. Counting ones How many ones in binary representation of

numbers from 0 to n?

► Let f(n) be the number of ones in binary representation of all integers from 0 to

n. Then the answer for the interval [a; b] is the value f(b) – f(a – 1).

000

001

010

011

101

100

f(5) = 7

00 0

00 1

01 0

01 1

10 0

10 1

=

00

01

10

f(2)

+

00

01

10

+ f(2)

+

0

1

0

1

0

1

+ (5+1)/2f(5) =

2 + 2 + 3=

If n is odd, then f(n) = 2 * f(n / 2) +  2/n .

https://www.e-olymp.com/en/problems/5973
https://www.e-olymp.com/en/problems/6583

If n is even, let f(n) = f(n – 1) + s(n), where s(n) is the number of ones in binary

representation of n.

The base case is f(0) = 0.

Consider the sample case, where a = 2, b = 12. The answer for the interval [2; 12]

will be the value of f(12) – f(1). There is one digit 1 in binary representation of the

number 1, so f(1) = 1. Compute f(12):

f(12) = f(11) + s(12) = f(11) + 2 f(12) = f(11) + 2 = 20 + 2 = 22

f(11) = 2 * f(5) +  2/11 = 2 * f(5) + 6 f(11) = 2 * f(5) + 6 = 2 * 7 + 6 = 20

f(5) = 2 * f(2) +  2/5 = 2 * f(2) + 3 f(5) = 2 * f(2) + 3 = 2 * 2 + 3 = 7

f(2) = f(1) + s(2) = 1 + 1 = 2

The answer is f(12) – f(1) = 22 – 1 = 21.

